题目内容
在下列各式中,计算正确的是( )
A. (2)2=6 B. =±3 C. =﹣6 D. =2﹣
某商场经营A种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请用含x的代数式表示该玩具的销售量.
(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
(3)该商场计划将(2)中所得的利润的一部分资金采购一批B种玩具并转手出售,根据市场调查并准备两种方案,方案①:如果月初出售,可获利15%,并可用本和利再投资C种玩具,到月末又可获利10%;方案②:如果只到月末出售可直接获利30%,但要另支付仓库保管费350元,请问商场如何使用这笔资金,采用哪种方案获利较多?
“十二五”以来,北京市人口增长过快导致城市不堪重负,是造成交通拥堵,能源匮乏等“大城市病”的根源之一.右图是根据北京市统计局近年各年末常住人口增长率及常住人口数的相关数据制作的统计图.
有下面四个判断:①从2011年至2016年,全市常住人口数在逐年下降; ②2010年末全市常住人口数达到近年来的最高值;③2015年末全市常住人口比2014年末增加18.9万人;④从2011年到2016年全市常住人口的年增长率连续递减。其中合理的是( )
A. ①② B. ①④ C. ②③ D. ③④
计算:
(1)
(2)
如图,AB∥CD,若∠2=135°,则∠1的度数是( )
A. 30° B. 45° C. 60° D. 75°
如图,互相垂直的两条射线OE与OF的端点O在三角板的内部,与三角板两条直角边的交点分别为点D、B.
(1)填空:若∠ABO=50°,则∠ADO= ;
(2)若DC、BP分别是∠ADO、∠ABF的角平分线,如图1.求证:DC⊥BP;
(3)若DC、BP分别分别是∠ADE、∠ABF的角平分线,如图2.猜想DC与BP的位置关系,并说明理由.
⑴计算:﹣+; ⑵解方程组.
如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.