题目内容
二次函数y=x2﹣x+1的图象与x轴的交点个数是 .
某商场经营某种品牌的童装,购进时的单价是60元,根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,商场销售该品牌童装获得的利润为4000元?
(3)若童装厂规定该品牌童装销售单价不低于76元,则商场销售该品牌童装获得的最大利润是多少?
若单项式3xm+5y2与﹣5x3y2是同类项,则m的值为 .
如图,已知菱形BEDF,内接于△ABC,点E,D,F分别在AB,AC和BC上.若AB=15cm,BC=12cm,求菱形边长.
如图,在矩形ABCD中,AD=4,DC=3,将△ADC绕点A按逆时针方向旋转到△AEF(点A、B、E在同一直线上),则AC在运动过程中所扫过的面积为 .
如图,A、B、C三点在⊙O上,连接ABCO,若∠AOC=140°,则∠B的度数为( )
A.140° B.120° C.110° D.130°
如图,已知抛物线y=x2+bx+c交x轴于点A(﹣1,0)、B(2,0),交y轴于点C,抛物线的对称轴交x轴于点H,直线y=kx(k>0)交抛物线于点M、N(点M在N的右侧),交抛物线的对称轴于点D.
(1)求b和c的值;
(2)如图(1),若将抛物线y=x2+bx+c沿y轴方向向上平移个单位,求证:所得新抛物线图象均在直线BC的上方;
(3)如图(2),若MN∥BC.
①连接CD、BM,判断四边形CDMB是否为平行四边形,说明理由;
②以点D为圆心,DH长为半径画圆⊙D,点P、Q分别为抛物线和⊙D上的点,试求线段PQ长的最小值.
因式分【解析】64﹣4x2= .
济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.