题目内容
双曲线y=
【答案】分析:根据A,B两点在直线y=x上,分别设A,B两点的坐标为(a,a),(b,b),得到点C的坐标为(a,
),点D的坐标为(b,
),线段AC=a-
,线段BD=b-
,根据BD=2AC,有b-
=2(a-
),然后利用勾股定理进行计算求出4OC2-OD2的值.
解答:解:设A(a,a),B(b,b),则C(a,
),D(b,
),
AC=a-
,BD=b-
,
∵BD=2AC,
∴b-
=2(a-
),
4OC2-OD2
=4(a2+
)-(b2+
)
=4[
+2]-[
+2]
=4
+8-4
-2
=6.
故答案为:6.
点评:本题考查的是反比例函数综合题,根据直线与反比例函数的解析式,设出点A,B的坐标后可以得到点C,D的坐标,运用勾股定理进行计算求出代数式的值.
解答:解:设A(a,a),B(b,b),则C(a,
AC=a-
∵BD=2AC,
∴b-
4OC2-OD2
=4(a2+
=4[
=4
=6.
故答案为:6.
点评:本题考查的是反比例函数综合题,根据直线与反比例函数的解析式,设出点A,B的坐标后可以得到点C,D的坐标,运用勾股定理进行计算求出代数式的值.
练习册系列答案
相关题目