题目内容
用代数式表示“m与n的差的平方”,正确的是( )
A. (m﹣n)2 B. m﹣n2 C. m2﹣n D. m2﹣n2
有理数的倒数是______.
如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
数轴上有分别表示—7与2的两点A、B,若将数轴沿点B对折,使点A与数轴上的另一点C重合,则点C表示的数为________.
写出﹣2m3n的一个同类项_______.
某商店将每件进价为80元的某种商店按每件110元出售,每天可售出100件.该商店想通过降低售价、增加销售量的方法来提高利润.经市场调查,发现这种商品每件每降价5元,每天的销售量可增加50件.设商品降价x元,每天销售该商品获得的利润为y元.
(1)求y(元)关于x(元)的函数关系式,并写出x的取值范围.
(2)求当x取何值时y最大?并求出y的最大值.
(3)若要是每天销售利润为3750元,且尽可能最大的向顾客让利,应将该商品降价多少元?
如图,在⊙O中,弦AB的长为8,圆心O到AB的距离为3.
(1)求⊙O的半径;
(2)若点P是AB上的一动点,试直接写出线段OP的取值范围.
已知⊙O的半径为3cm,点P到圆心O的距离OP=2cm,则点P( )
A. 在⊙O外 B. 在⊙O上 C. 在⊙O内 D. 在⊙O上或在⊙O内
如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为( )
A. 13 B. 19 C. 25 D. 169