题目内容
数据9、9、6、3、6、2、6的众数是( )
A.2 B.3 C.6 D.9
如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
用配方法解关于x的方程x2+mx+n=0,此方程可变形为( )
A.
B.
C.
D.
分解因式:2a2-8b2= .
如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
A.120° B.90° C.60° D.30°
(14分)如图,已知抛物线()与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(3分)下列四个命题中,正确的是 (填写正确命题的序号)
①三角形的外心是三角形三边垂直平分线的交点;
②函数与x轴只有一个交点,则;
③半径分别为1和2的两圆相切,则两圆的圆心距为3;
④若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形
(1)求该抛物线的解析式;
(2)求点P的坐标;
(3)求证:CE=EF;
(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=].
(3分)二次函数的图象大致为( )
A. B. C. D.