题目内容
四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及
| EC |
| GC |
(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=
| 2 |
分析:(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=
(EF+DC)=
(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;
(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;
(3)连接BD,求出cos∠DBE=
=
,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.
| 1 |
| 2 |
| 1 |
| 2 |
(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;
(3)连接BD,求出cos∠DBE=
| BE |
| BD |
| 1 |
| 2 |
解答:解:(1)EG⊥CG,
=
,
理由是:过G作GH⊥EC于H,
∵∠FEB=∠DCB=90°,
∴EF∥GH∥DC,
∵G为DF中点,
∴H为EC中点,
∴EG=GC,GH=
(EF+DC)=
(EB+BC),
即GH=EH=HC,
∴∠EGC=90°,
即△EGC是等腰直角三角形,
∴
=
;
(2)
解:结论还成立,
理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,
∵在△EFG和△HDG中
∴△EFG≌△HDG(SAS),
∴DH=EF=BE,∠FEG=∠DHG,
∴EF∥DH,
∴∠1=∠2=90°-∠3=∠4,
∴∠EBC=180°-∠4=180°-∠1=∠HDC,
在△EBC和△HDC中
∴△EBC≌△HDC.
∴CE=CH,∠BCE=∠DCH,
∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,
∴△ECH是等腰直角三角形,
∵G为EH的中点,
∴EG⊥GC,
=
,
即(1)中的结论仍然成立;
(3)
解:连接BD,
∵AB=
,正方形ABCD,
∴BD=2,
∴cos∠DBE=
=
,
∴∠DBE=60°,
∴∠ABE=∠DBE-∠ABD=15°,
∴∠ABF=45°-15°=30°,
∴tan∠ABF=
,
∴DE=
BE=
,
∴DF=DE-EF=
-1.
| EC |
| GC |
| 2 |
理由是:过G作GH⊥EC于H,
∵∠FEB=∠DCB=90°,
∴EF∥GH∥DC,
∵G为DF中点,
∴H为EC中点,
∴EG=GC,GH=
| 1 |
| 2 |
| 1 |
| 2 |
即GH=EH=HC,
∴∠EGC=90°,
即△EGC是等腰直角三角形,
∴
| EC |
| GC |
| 2 |
(2)
解:结论还成立,
理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,
∵在△EFG和△HDG中
|
∴△EFG≌△HDG(SAS),
∴DH=EF=BE,∠FEG=∠DHG,
∴EF∥DH,
∴∠1=∠2=90°-∠3=∠4,
∴∠EBC=180°-∠4=180°-∠1=∠HDC,
在△EBC和△HDC中
|
∴△EBC≌△HDC.
∴CE=CH,∠BCE=∠DCH,
∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,
∴△ECH是等腰直角三角形,
∵G为EH的中点,
∴EG⊥GC,
| EC |
| GC |
| 2 |
即(1)中的结论仍然成立;
(3)
解:连接BD,
∵AB=
| 2 |
∴BD=2,
∴cos∠DBE=
| BE |
| BD |
| 1 |
| 2 |
∴∠DBE=60°,
∴∠ABE=∠DBE-∠ABD=15°,
∴∠ABF=45°-15°=30°,
∴tan∠ABF=
| ||
| 3 |
∴DE=
| 3 |
| 3 |
∴DF=DE-EF=
| 3 |
点评:本题考查了全等三角形的性质和判定,梯形的中位线,等腰直角三角形的性质和判定等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,难度偏大.
练习册系列答案
相关题目