题目内容
某物体在坡比为1:
的斜坡上前进了30米,则此物体竖直升高了
- A.15
米 - B.15米
- C.10
米 - D.10米
B
分析:已知坡度比,即可求得坡角,然后根据正弦值来解答.
解答:
解:如图所示,在直角三角形ABC中,∠C=90°.
∵tan∠A=
,
∴∠A=30°.
又∵AB=30,
∴BC=AB•sin30°=15(米).
故选B.
点评:此题的关键是熟悉且会灵活应用公式:tanα(坡度)=高程差/水平距离,综合考查了三角函数定义.
分析:已知坡度比,即可求得坡角,然后根据正弦值来解答.
解答:
∵tan∠A=
∴∠A=30°.
又∵AB=30,
∴BC=AB•sin30°=15(米).
故选B.
点评:此题的关键是熟悉且会灵活应用公式:tanα(坡度)=高程差/水平距离,综合考查了三角函数定义.
练习册系列答案
相关题目
某物体在坡比为1:
的斜坡上前进了30米,则此物体竖直升高了( )
| 3 |
A、15
| ||
| B、15米 | ||
C、10
| ||
| D、10米 |