题目内容
如图,菱形ABCD中,两条对角线长AC=8,BD=6,则菱形ABCD的面积为 .
将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
A.y=(x+2)2﹣3B.y=(x+2)2+3
C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3
如图,在2×2的正方形网格中有9个格点,已知取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是 .
双曲线y=(x>0)与直线y=x在坐标系中的图象如图所示,点A、B在直线上AC、BD分别平行y轴,交曲线于C、D两点,若BD=2AC,则4OC2﹣OD2的值为 .
将四张分别写有数字1,2,3,4的红色卡片放在一个不透明的盒中,三张分别写有数字1,2,3的蓝色卡片放在另一个不透明的盒中,卡片除颜色和数字外完全相同.现从两个盒内各任意抽取一张卡片,以红色卡片上的数字作为十位数字,蓝色卡片上的数字作为个位数字组成一个两位数.
(1)求组成的两位数是偶数的概率;
(2)求组成的两位数大于22的概率.
如图,⊙O中,劣弧AB所对的圆心角∠AOB=120°,点C在劣弧AB上,则圆周角∠ACB=( )
A.60° B.120° C.135° D.150°
在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;
(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.
方程的解是( )
A.x=3 B.x=﹣2 C.x=2 D.x=5
设x1 , x2是方程x(x-1)+3(x-1)=0的两根,则= 。