题目内容
已知函数y=(2m+1)x+m-3
(1)若函数图象经过原点,求m的值;
(2)若函数的图象平行直线y=3x-3,求m的值;
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
(1)若函数图象经过原点,求m的值;
(2)若函数的图象平行直线y=3x-3,求m的值;
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
分析:(1)令x=0,y=0求出值即可;
(2)根据互相平行的两条直线斜率相等求出m的值即可;
(3)根据一次函数的性质求出m的取值范围.
(2)根据互相平行的两条直线斜率相等求出m的值即可;
(3)根据一次函数的性质求出m的取值范围.
解答:解:(1)∵函数y=(2m+1)x+m-3的图象经过原点,
∴当x=0时y=0,即m-3=0,解得m=3;
(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,
∴2m+1=3,解得m=1;
(3)∵这个函数是一次函数,且y随着x的增大而减小,
∴2m+1<0,解得m<-
.
∴当x=0时y=0,即m-3=0,解得m=3;
(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,
∴2m+1=3,解得m=1;
(3)∵这个函数是一次函数,且y随着x的增大而减小,
∴2m+1<0,解得m<-
| 1 |
| 2 |
点评:本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时y随x的增大而减小是解答此题的关键.
练习册系列答案
相关题目