题目内容
如图,,且,,,求和的度数.
因为,
所以
.
将绕点按逆时针方向旋转,旋转角为,旋转后使各边长变为原来的倍,得到,我们将这种变换记为[].
(1)如图①,对作变换[]得,则:= ___;直线与直线所夹的锐角为 __ °;
图①
(2)如图②,中,,对 作变换[]得,使得四边形为梯形,其中∥,且梯形的面积为,求和的值.
图②
如图,已知二次函数的图象与轴相交于两个不同的点、,与轴的交点为.设的外接圆的圆心为点.
(1)求与轴的另一个交点D的坐标;
(2)如果恰好为的直径,且的面积等于,求和的值.
如图,将一块直角三角形纸板的直角顶点放在处,两直角边分别与轴平行,纸板的另两个顶点恰好是直线与双曲线的交点.
(1)求和的值;
(2)设双曲线在之间的部分为,让一把三角尺的直角顶点在上
滑动,两直角边始终与坐标轴平行,且与线段交于两点,请探究是否存在点使得,写出你的探究过程和结论.