题目内容
【题目】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过
上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.
(1)求证:△ECF∽△GCE;
(2)求证:EG是⊙O的切线;
(3)延长AB交GE的延长线于点M,若tanG=
,AH=3
,求EM的值.
![]()
【答案】(1)证明见解析;(2)证明见解析;(3)
【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出
,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;
(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;
(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得
,由此即可解决问题;
试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴
,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.
![]()
(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.
![]()
(3)解:如图3中,连接OC.设⊙O的半径为r.
![]()
在Rt△AHC中,tan∠ACH=tan∠G=
=
,∵AH=
,∴HC=
,在Rt△HOC中,∵OC=r,OH=r﹣
,HC=
,∴
,∴r=
,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴
,∴
,∴EM=
.
练习册系列答案
相关题目