题目内容
【题目】如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)求证:△ABE∽△DBA;
(3)若BD=8,BE=6,求AB的长.
![]()
【答案】(1)见解析;(2)见解析;(3)AB=4
.
【解析】
(1)由圆周角定理得出∠ABD=90°,∠C=∠D,证出∠BAD+∠BAF=90°,得出AF⊥AD,即可得出结论;
(2)由圆周角定理得出∠BAC=∠C,∠C=∠D,得出∠BAC=∠D,再由公共角∠ABE=∠DBA,即可得出△ABE∽△DBA;
(3)由相似三角形的性质得出
,代入计算即可得出结果.
(1)证明:∵AD是⊙O的直径,
∴∠ABD=90°,
∴∠BAD+∠D=90°,
∵∠BAF=∠C,∠C=∠D,
∴∠BAF=∠D,
∴∠BAD+∠BAF=90°,
即∠FAD=90°,
∴AF⊥AD,
∴AF是⊙O的切线;
(2)证明:∵
,
∴∠BAC=∠C,
∵∠C=∠D,
∴∠BAC=∠D,即∠BAE=∠D,
又∵∠ABE=∠DBA,
∴△ABE∽△DBA;
(3)解:由(2)得:△ABE∽△DBA,
∴
,即
,
解得:AB=
.
【题目】学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表
学生借阅图书的次数
借阅图书的次数 | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人数 | 7 | 13 | a | 10 | 3 |
学生借阅图书的次数统计表
![]()
请你根据统计图表的信息,解答下列问题:
(1)a= ;b=
(2)该调查统计数据的中位数是__________次
(3)扇形统计图中,“3次”所对应的扇形圆心角度数是______________;
(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次以上”的人数