题目内容
计算下列各式(1)
| 2m-n |
| n-m |
| m |
| m-n |
| n |
| n-m |
(2)
| 12 |
| m2-9 |
| 2 |
| 3-m |
(3)
| x2-2x+1 |
| x2 |
| x-2 |
| 1-x |
分析:(1)先转化成同分母,再根据同分母分式相加减,分母不变,只把分子相加减计算;
(2)先通分,再进行同分母分式的加减运算;
(3)把第一个分式的分子分解因式,再进行分式的乘除运算.
(2)先通分,再进行同分母分式的加减运算;
(3)把第一个分式的分子分解因式,再进行分式的乘除运算.
解答:解:(1)
+
+
,
=
-
+
,
=
,
=
;
(2)
+
,
=
-
,
=
,
=-
;
(3)
÷(x-1)•
,
=
•
•
,
=-
.
| 2m-n |
| n-m |
| m |
| m-n |
| n |
| n-m |
=
| 2m-n |
| n-m |
| m |
| n-m |
| n |
| n-m |
=
| 2m-n-m+n |
| n-m |
=
| m |
| n-m |
(2)
| 12 |
| m2-9 |
| 2 |
| 3-m |
=
| 12 |
| m2-9 |
| 2m+6 |
| m2-9 |
=
| 6-2m |
| m2-9 |
=-
| 2 |
| m+3 |
(3)
| x2-2x+1 |
| x2 |
| x-2 |
| 1-x |
=
| (x-1)2 |
| x2 |
| 1 |
| x-1 |
| x-2 |
| 1-x |
=-
| x-2 |
| x2 |
点评:本题主要考查分式的加减运算,通过通分把异分母分式化成同分母分式是解题的关键,分式的乘除运算,分子分母如果是多项式要先分解因式,然后再计算.
练习册系列答案
相关题目