题目内容
【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,BC边上有一点E,BE=4,将纸片折叠,使A点与E点重合,折痕MN交AD于M点,则线段AM的长是_____.
![]()
【答案】
【解析】
过M作MF⊥BC于F,根据矩形的性质得到∠DAB=∠B=90°,推出四边形ABFM是矩形,得到BF=AM,FM=AB=6,根据折叠的性质得到AM=ME,设AM=
,则EF=BF=
,根据勾股定理列方程即可得到结论.
过M作MF⊥BC于F,
∵四边形ABCD是矩形,
∴∠DAB=∠B=90°,
∴四边形ABFM是矩形,
∴BF=AM,FM=AB=6,
∵将纸片折叠,使A点与E点重合,折痕MN交AD于M点,
∴AM=ME,
设AM=
,则EF=BF=
,
∴EF=
,
在Rt△MEF中,
,
∴
,
解得:
.
故答案为:
.
练习册系列答案
相关题目