题目内容
已知a+b+c=0,
+
+
=-4,那么
+
+
的值为( )
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| A、3 | B、8 | C、16 | D、20 |
分析:由
+
+
=-4,即可求得(
+
+
)2=16,整理可得
+
+
+
=16,又由a+b+c=0,即可求得
+
+
的值.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| 2(a+b+c) |
| abc |
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
解答:解:∵a+b+c=0,
+
+
=-4,
∴(
+
+
)2=16,
即:
+
+
+
+
+
=
+
+
+
=16,
∴
+
+
=16.
故选C.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
∴(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
即:
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| 2 |
| ab |
| 2 |
| ac |
| 2 |
| bc |
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| 2(a+b+c) |
| abc |
∴
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
故选C.
点评:此题考查了分式的化简求值问题.此题难度适中,解题的关键是由(
+
+
)2=16求得
+
+
+
=16,注意解题需细心.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
| 2(a+b+c) |
| abc |
练习册系列答案
相关题目