题目内容

如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为________.


分析:首先由折叠的性质与矩形的性质,证得△BND是等腰三角形,则在Rt△ABN中,利用勾股定理,借助于方程即可求得AN的长,又由△ANB≌△C′ND,易得:∠FDM=∠ABN,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解.
解答:解:设BC′与AD交于N,EF与AD交于M,
根据折叠的性质可得:∠NBD=∠CBD,AM=DM=AD,∠FMD=∠EMD=90°,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC=4,∠BAD=90°,
∴∠ADB=∠CBD,
∴∠NBD=∠ADB,
∴BN=DN,
设AN=x,则BN=DN=4-x,
∵在Rt△ABN中,AB2+AN2=BN2
∴32+x2=(4-x)2
∴x=
即AN=
∵C′D=CD=AB=3,∠BAD=∠C′=90°,∠ANB=∠C′ND,
∴△ANB≌△C′ND(AAS),
∴∠FDM=∠ABN,
∴tan∠FDM=tan∠ABN,


∴MF=
由折叠的性质可得:EF⊥AD,
∴EF∥AB,
∵AM=DM,
∴ME=AB=
∴EF=ME+MF=+=
故答案为:
点评:此题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识.此题综合性较强,解题时要注意数形结合思想与方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网