题目内容
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P以每秒一个单位的速度沿着B—C一A运动,⊙P始终与AB相切,设点P运动的时间为,⊙P的面积为,则与之间的函数关系图像大致是
如图1,动点P从点B出发,以2厘米/秒的速度沿路径B—C—D—E—F—A运动,设运动时间为t(秒),当点P不与点A、B重合时,△ABP的面积S(平方厘米)关于时间t(秒)的函数图象2所示,若AB=6厘米,则下列结论正确的是 ( )
A.图1中BC的长是4厘米
B.图2中的a是12
C.图1中的图形面积是60平方厘米
D.图2中的b是19
小明在某风景区的观景台O处观测到东北方向的P处有一艘货船, 该船正向南匀速航 行30分钟后再观察时,该船已航行到O的南偏东30,且与O相距6km的Q处.如图所示.货船的航行速度是____________km/h.(结果用根号表示.)
在学习《5.1圆》这一节时,小明遇到了一个问题:如图(1),△ABC与△DBC中,∠A=∠D=90°,M为BC中点,试说明点A、B、C、D在以点M为圆心的同一个圆上.
(1) (2) (3) (4)
小明想到了一个方法,如图(2),连接AM、DM,利用直角三角形的某条性质,得到AM=BM=CM=DM,进而说明了点A、B、C、D在以点M为圆心的同一个圆上.
(1)小明利用的直角三角形的性质是_______________;
(2)在如图(3)的四边形ABDC中,∠A=∠D=90°,点A、B、D、C在同一个圆上吗?说明你的理由.
(3)根据上一问的经验,请解决如下问题:
如图(4),△ABC中,三条高CF、BE、AD相交于点H,连接EF、FD、DE,试说明AD平分∠FDE.
如图,一次函数的图象经过点P(,)和Q(,),则的值为________.
如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是
A. B.2 C.3 D.4
如图,抛物线交x轴于A.B两点,A点坐标为(3,0),与y轴交于C(0,4),以OC.OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)平行于抛物线对称轴的直线l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长,并求PM长的最大值。
(3)在(2)的条件下,连接PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C.F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由。
如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1︰2.5,斜坡CD的坡角为30度,则坝底AD的长度为( )。
A.56米 B.66米 C.()米 D.()米
(本小题满分7分)
学校为了解全校l 600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(直接填写答案)
(1)在这次调查中,一共要抽取学生__________名;
(2)在这次调查中,抽取的学生中步行有__________名;
(3)估计全校所有乘坐公交车上学的学生__________人.