题目内容

如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于点M,连接CM.

(1)求证:BE=AD;

(2)用含α的式子表示∠AMB的度数;

(3)当α=90°时,取AD,BE的中点分别为点P,Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.

(1)证明见解析;(2)∠AMB=α;(3)△CPQ为等腰直角三角形,证明见解析. 【解析】试题分析:(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE; (2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α; (3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网