搜索
题目内容
如图,则正方形A的边长是( )
A.6
B.36
C.64
D.8
试题答案
相关练习册答案
分析:
由已知正方形的面积,以及图形中的直角三角形,利用勾股定理列出关于A的方程,求出方程的解得到A的值,即可确定出正方形A的边长.
解答:
解:根据勾股定理及正方形的面积公式得:A+64=100,
解得:A=36,
则正方形A的边长为6.
故选A
点评:
此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.
练习册系列答案
阳光课堂口算题系列答案
快乐每一天神算手天天练系列答案
小学教材全解全析系列答案
原创讲练测课优新突破系列答案
学优冲刺100系列答案
名校秘题小学毕业升学系统总复习系列答案
名师面对面小考满分策略系列答案
教材全解字词句篇系列答案
课时练全优达标测试卷系列答案
万唯中考试题研究系列答案
相关题目
如图,延长正方形ABCD的边AB到E,使BE=AC,则∠E=
度.
如图1,在平面直角坐标系中,抛物线过原点O,点A(10,0)和点B(2,2),在线段OA上,点P从点O向点A运动,同时点Q从点A向点O运动,运动过程中保持AQ=2OP,当P、Q重合时同时停止运动,过点Q作x轴的垂线,交直线AB于点M,延长QM到点D,使MD=MQ,以QD为对角线作正方形QCDE(正方形QCDE随点Q运动).
(1)求这条抛物线的函数表达式;
(2)设正方形QCDE的面积为S,P点坐标(m,0)求S与m之间的函数关系式;
(3)过点P作x轴的垂线,交抛物线于点N,延长PN到点G,使NG=PN,以PG为对角线作正方形PFGH(正方形PFGH随点P运动),当点P运动到点(2,0)时,如图2,正方形PFGH的边GF和正方形QCDE的边EQ落在同一条直线上.
①则此时两个正方形中在直线AB下方的阴影部分面积的和是多少?
②若点P继续向点A运动,还存在两个正方形分别有边落在同一条直线上的情况,请直接写出每种情况下点P的坐标,不必说明理由.
基本模型
如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,
(1)模型拓展
如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?
(2)模型应用
①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;
②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?
如图,以正方形ABCD的边BC为直径在正方形内作半圆O,过点A作半圆的切线AE,则
CE
BC
=
5
5
5
5
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案