题目内容
【题目】某商店分两次购进
、
两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
购进数量(件) | 购进所需费用(元) | ||
|
| ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1)求
、
两种商品每件的进价分别是多少元?
(2)商场决定
种商品以每件30元出售,
种商品以每件100元出售.为满足市场需求,需购进
、
两种商品共1000件,且
种商品的数量不少于
种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
【答案】(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.
【解析】
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.
(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,
根据题意得:
,
解得:
.
答:A种商品每件的进价为20元,B种商品每件的进价为80元.
(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000-m)件,
根据题意得:w=(30-20)(1000-m)+(100-80)m=10m+10000.
∵A种商品的数量不少于B种商品数量的4倍,
∴1000-m≥4m,
解得:m≤200.
∵在w=10m+10000中,k=10>0,
∴w的值随m的增大而增大,
∴当m=200时,w取最大值,最大值为10×200+10000=12000,
∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.
【题目】某校为了解九年级学生的身体素质情况,体育老师对九(1)班50位学生进行测试,根据测试评分标准,将他们的得分进行统计后分为A,B,C,D四等,并绘制成如图所示的频数分布表和扇形统计图.
等第 | 成绩(得分) | 频数(人数) | 频率 |
A | 10分 | 7 | 0.14 |
9分 | x | m | |
B | 8分 | 15 | 0.30 |
7分 | 8 | 0.16 | |
C | 6分 | 4 | 0.08 |
5分 | y | n | |
5分以下 | 3 | 0.06 | |
合计 | 50 | 1 |
(1)直接写出:m,x,y;
(2)求表示得分为C等的扇形的圆心角的度数;
(3)如果该校九年级共有700名学生,试估计这700名学生中成绩达到A等和B等的人数共有多少人?
![]()