题目内容
【题目】已知抛物线
,顶点为A,且经过点
,点
.
(1)求抛物线的解析式;
(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
![]()
【答案】(1)
;(2)
或
;(3)(﹣
,
)或(﹣
,2)或(
,2).
【解析】
(1)将点B坐标代入解析式求得a的值即可;
(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得
,即OP=
FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;
(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
(1)把点
代入
,
解得:a=1,
∴抛物线的解析式为:
;
(2)由
知顶点A(
,﹣2),
设直线AB解析式为:y=kx+b,代入点A,B的坐标,
得:
,
解得:
,
∴直线AB的解析式为:y=﹣2x﹣1,
易求E(0,﹣1),
,
,
∵∠OPM=∠MAF,
∴OP∥AF,
∴△OPE∽△FAE,
∴
,
∴
,
设点P(t,﹣2t﹣1),则:![]()
解得
,
,
∵△POE的面积=
OE|t|,
∴△POE的面积为
或
.
(3)若点Q在AB上运动,如图1,
![]()
设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,
由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,
由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
∴
,即
,
∴QR=2,ES=
,
由NE+ES=NS=QR可得﹣a+
=2,
解得:a=﹣
,
∴Q(﹣
,
);
若点Q在BC上运动,且Q在y轴左侧,如图2,
![]()
设NE=a,则N′E=a,
易知RN′=2、SN′=1、QN′=QN=3,
∴QR=
、SE=
﹣a,
在Rt△SEN′中,(
﹣a)2+12=a2,
解得:a=
,
∴Q(﹣
,2);
若点Q在BC上运动,且点Q在y轴右侧,如图3,
设NE=a,则N′E=a,
易知RN′=2,SN′=1,QN′=QN=3,
∴QR=
,SE=
﹣a,
在Rt△SEN′中,(
﹣a)2+12=a2,
解得:a=
,
∴Q(
,2).
综上,点Q的坐标为(﹣
,
))或(﹣
,2)或(
,2).