题目内容

(2003•河南)已知m=
1
2+
3
,n=
1
2-
3
,求(1+
2n2
m2-n2
)÷(1+
2n
m-n
)
的值.
分析:先根据分式混合运算的法则把原式进行化简,再求出m、n的值,代入原式进行计算即可.
解答:解:原式=
m2+n2
(m+n)(m-n)
÷
m+n
m-n

=
m2+n2
(m+n)(m-n)
×
m-n
m+n

=
m2+n2
(m+n)2

=
(m+n)2-2mn
(m+n)2

=1-
2mn
(m+n)2

∵m=
1
2+
3
=2-
3
,n=
1
2-
3
=2+
3

∴原式=1-
2(2-
3
)(2+
3
)
(2-
3
+2+
3
)
2
=1-
2×1
16
=-1
1
8
=
7
8
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网