题目内容
【题目】如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.
![]()
【答案】解:(1)∵α=60°,BC=10,∴sinα=
,即sin60°=
,解得CE=
。
(2)①存在k=3,使得∠EFD=k∠AEF。理由如下:
连接CF并延长交BA的延长线于点G,
![]()
∵F为AD的中点,∴AF=FD。
在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF。
在△AFG和△CFD中,
∵∠G=∠DCF, ∠G=∠DCF,AF=FD,
∴△AFG≌△CFD(AAS)。∴CF=GF,AG=CD。
∵CE⊥AB,∴EF=GF。∴∠AEF=∠G。
∵AB=5,BC=10,点F是AD的中点,∴AG=5,AF=
AD=
BC=5。∴AG=AF。
∴∠AFG=∠G。
在△AFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG,∴∠CFD=∠AEF。
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF。
②设BE=x,∵AG=CD=AB=5,∴EG=AE+AG=5﹣x+5=10﹣x,
在Rt△BCE中,CE2=BC2﹣BE2=100﹣x2。
在Rt△CEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x。
∵CF=GF(①中已证),∴CF2=(
CG)2=
CG2=
(200﹣20x)=50﹣5x。
∴CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣
)2+50+
。
∴当x=
,即点E是AB的中点时,CE2﹣CF2取最大值。
此时,EG=10﹣x=10﹣
,CE=
,
∴
。
【解析】锐角三角函数定义,特殊角的三角函数值,平行四边形的性质,对顶角的性质,全等三角形的判定和性质,直角三角形斜边上的中线性质,等腰三角形的性质,二次函数的最值,勾股定理。
(1)利用60°角的正弦值列式计算即可得解。
(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△CFD全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解。
②设BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答。
【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:
测试项目 | 测试成绩 | ||
甲 | 乙 | 丙 | |
专业知识 | 74 | 87 | 90 |
语言能力 | 58 | 74 | 70 |
综合素质 | 87 | 43 | 50 |
(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?
(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?
(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x= ,y= .(写出x与y的一组整数值即可).