搜索
题目内容
如图
:
直线
AB
是一次函数
y
=
kx
+
b
的图象,若
,则函数的表达式为
________.
试题答案
相关练习册答案
答案:
练习册系列答案
春雨教育考必胜中考试卷精选系列答案
天利38套解锁中考真题档案系列答案
中考速递河南中考系列答案
PASS教材搭档系列答案
天利38套中考总复习命题规律与必考压轴题系列答案
天利38套对接中考中考总复习系列答案
欢乐校园成长大本营系列答案
速算天地数学口算心算系列答案
万唯教育中考真题分类集训系列答案
赢战中考3年中考2年模拟系列答案
相关题目
我们知道过两点有且只有一条直线.
阅读下面文字,分析其内在涵义,然后回答问题:
如图,同一平面中,任意三点不在同一直线上的四个点A、B、C、D,过每两个点画一条直线,一共可以画出多少条直线呢?我们可以这样来分析:
过A点可以画出三条通过其他三点的直线,过B点也可以画出三条通过其他三点的直线.同样,过C点、D点也分别可以画出三条通过其他三点的直线.这样,一共得到3×4=12条直线,但其中每条直线都重复过一次,如直线AB和直线BA是一条直线,因此,图中一共有
3×4
2
=6条直线.请你仿照上面分析方法,回答下面问题:
(1)若平面上有五个点A、B、C、D、E,其中任何三点都不在一条直线上,过每两点画一条直线,一共可以画出
条直线;
若平面上有符合上述条件的六个点,一共可以画出
条直线;
若平面上有符合上述条件的n个点,一共可以画出
条直线(用含n的式子表示).
(2)若我校初中24个班之间进行篮球比赛,第一阶段采用单循环比赛(每两个班之间比赛一场),类比上面的分析计算第一阶段比赛的总场次是多少?
根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
AC(用含α的三角函数表示).
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
编写试题选取的材料是
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm
2
),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.
根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm
2
),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.
根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm
2
),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.
我们知道过两点有且只有一条直线.
阅读下面文字,分析其内在涵义,然后回答问题:
如图,同一平面中,任意三点不在同一直线上的四个点A、B、C、D,过每两个点画一条直线,一共可以画出多少条直线呢?我们可以这样来分析:
过A点可以画出三条通过其他三点的直线,过B点也可以画出三条通过其他三点的直线.同样,过C点、D点也分别可以画出三条通过其他三点的直线.这样,一共得到3×4=12条直线,但其中每条直线都重复过一次,如直线AB和直线BA是一条直线,因此,图中一共有
=6条直线.请你仿照上面分析方法,回答下面问题:
(1)若平面上有五个点A、B、C、D、E,其中任何三点都不在一条直线上,过每两点画一条直线,一共可以画出______条直线;
若平面上有符合上述条件的六个点,一共可以画出______条直线;
若平面上有符合上述条件的n个点,一共可以画出______条直线(用含n的式子表示).
(2)若我校初中24个班之间进行篮球比赛,第一阶段采用单循环比赛(每两个班之间比赛一场),类比上面的分析计算第一阶段比赛的总场次是多少?
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案