题目内容
如图,将线段AB沿箭头方向平移2 cm得到线段CD,若AB=3 cm,则四边形ABDC的周长为( )
A. 8 cm B. 10 cm C. 12 cm D. 20 cm
已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
若方程的两根为和,且,则下列结论中正确的是 ( )
A.是19的算术平方根 B.是19的平方根 C.是19的算术平方根 D.是19的平方根
如图所示,一辆汽车,经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角度为α,第二次转过的角度为β,则β等于( )
A. α B. 90°﹣α C. 180°﹣α D. 90°+α
下列计算中可采用平方差公式的是( )
A. (x+y)(x﹣z) B. (﹣x+2y)(x+2y)
C. (﹣3x﹣y)(3x+y) D. (2a+3b)(2b﹣3a)
下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:
(1)画一个直角边长为4,面积为6的直角三角形.
(2)画一个底边长为4,面积为8的等腰三角形.
(3)画一个面积为5的等腰直角三角形.
(4)画一个边长为2,面积为6的等腰三角形.
计算:()﹣2+|﹣2|﹣+6cos30°+(π﹣3.14)0.
学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表(假设每辆车均满载):
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?
如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为( )
A. 40° B. 35° C. 30° D. 45°