题目内容

如图1,以边长为8的正方形纸片ABCD的边AB为直径做⊙O,交对角线AC于点E.
(1)线段AE=______
【答案】分析:(1)连接BE,则可得出△AEB是等腰直角三角形,再由AB=8,可得出AE的长.
(2)①连接OA、OF,可判断出△OAF是等边三角形,从而可求出AF的长;②此时可得DAM=30°,根据AD=8可求出AF的长,也可判断DM与⊙O的位置关系;③根据AD等于⊙O的直径,可得出当DM与⊙O相切时,点D在⊙O上,从而可得出α的度数.
解答:解:(1)
连接BE,
∵AC是正方形ABCD的对角线,
∴∠BAC=45°,
∴△AEB是等腰直角三角形,
又∵AB=8,
∴AE=4
(2)①
连接OA、OF,
由题意得,∠NAD=30°,∠DAM=30°,
故可得∠OAM=30°,∠DAM=30°,
则∠OAF=60°,
又∵OA=OF,
∴△OAF是等边三角形,
∵OA=4,
∴AF=OA=4;

连接B'F,此时∠NAD=60°,
∵AB'=8,∠DAM=30°,
∴AF=AB'cos∠DAM=8×=4
此时DM与⊙O的位置关系是相离;

∵AD=8,直径的长度相等,
∴当DM与⊙O相切时,点D在⊙O上,
故此时可得α=∠NAD=90°.
点评:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网