题目内容
【题目】如图,在
中,
,
,
为
边上的高,过点
作
,过点
作
,
与
交于点
,
与
交于点
,连结
.
![]()
(1)求证:四边形
是矩形;
(2)求四边形
的周长.
【答案】(1)见详解;(2)![]()
【解析】
(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.
(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.
(1)证明:∵AE∥BC,DE∥AC,
∴四边形AEDC是平行四边形.
∴AE=CD.
在△ABC中,AB=AC,AD为BC边上的高,
∴∠ADB=90°,BD=CD.
∴BD=AE.
∴四边形AEBD是矩形.
(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=
BC=3,
∴AD=
.
∴四边形AEBD的周长=
.
![]()
【题目】小东根据学习函数的经验,对函数
的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数
的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … |
|
|
| 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值为________________;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数
的大致图象;
![]()
(4)结合函数图象,请写出函数
的一条性质:______________________.
(5)解决问题:如果函数
与直线y=a的交点有2个,那么a的取值范围是______________ .
【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天) | 1 | 3 | 6 | 10 | … |
日销售量(m件) | 198 | 194 | 188 | 180 | … |
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天) | 1≤x<50 | 50≤x≤90 |
销售价格(元/件) | x+60 | 100 |
(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.