题目内容

如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.

解:∵OE平分∠AOB,OF平分∠BOC,
∴∠BOF=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,
∵∠BOF=∠EOF-∠BOE=60°-45°=15°,
∴∠BOC=2∠BOF=30°;
∠AOC=∠BOC+∠AOB=30°+90°=120°.
分析:根据角平分线的定义得到∠BOF=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF-∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.
点评:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网