题目内容
已知等腰直角三角形ABC的腰长为4,半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,则半圆的半径为
2或﹣4+
.
解:①∵半圆的直径在△ABC的斜边上,且半圆的弧与△ABC的两腰相切,切点为D、E,
如图,连接OD,OA,
∵AB与⊙O相切,
∴OD⊥AB,
∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,
∴AO⊥BC,
∴OD∥AC,
∵O为BC的中点,
∴OD=
AC=2.
②∵半圆的直径在△ABC的腰上,且半圆的弧与△ABC的斜边相切,切点为D,
如图2,连接OD,设半圆的半径为r,
∴OB=4﹣r,
∵在等腰直角三角形ABC中,AB=AC=4,
∴∠B=45°,
∴△OBD是等腰直角三角形,
∴OD=BD=r,
∴2r2=(4﹣r)2,解得r=﹣4+4
,r=﹣4﹣4
(舍去),
故答案为2或﹣4+4
.
![]()
![]()
练习册系列答案
相关题目