题目内容
分别用写有“桐乡”、“卫生”、“城市”的词语拼句子,那么能够排成“桐乡卫生城市”或“卫生城市桐乡”的概率是( ).
A. B. C. D.
如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA =∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP // BC,且OP = 8,⊙O的半径为,求BC的长.
一只袋子中装有3个白球和7个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,则摸到白球的概率是 .
在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若,则称点Q为点P的“可控变点”.
例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).
(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为 ;(2)若点P在函数()的图象上,其“可控变点”Q的纵坐标y′的取值范围是,则实数a的取值范围是 .
如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是( ).
已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,已知∠P=50°,则∠ACB= 度.
如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D′CE′,如图乙.这时AB与CD′相交于点O,D′E′与AB相交于点F,连接AD′.
(1)求∠OFE′的度数;
(2)求线段AD′的长;
(3)若把三角形D′C E′ 绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2 的内部、外部、还是边上?证明你的判断.
圆的一条弦分圆成4:5两部分,则此弦所对的圆心角等于 .