题目内容
【题目】如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N
(1)求证:MN=MC;
(2)若DM:DB=2:5,求证:AN=4BN;
(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NGCG的值.
![]()
【答案】(1)见解析;(2)见解析;(3)CGNG=
.
【解析】
(1)作ME∥AB、MF∥BC,证四边形BEMF是正方形得ME=MF,再证∠CME=∠FMN,从而得△MFN≌△MEC,据此可得证;
(2)由FM∥AD,EM∥CD知
=
=
=
,据此得AF=2.4,CE=2.4,由△MFN≌△MEC知FN=EC=2.4,AN=4.8,BN=6-4.8=1.2,从而得出答案;
(3)把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,先证△MCG≌△HCG得MG=HG,由BG:MG=3:5可设BG=3a,则MG=GH=5a,继而知BH=4a,MD=4a,由DM+MG+BG=12a=6
得a=
,知BG=
,MG=
,证△MGC∽△NGB得
,从而得出答案.
解:(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,
![]()
则四边形BEMF是平行四边形,
∵四边形ABCD是正方形,
∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,
∴ME=BE,
∴平行四边形BEMF是正方形,
∴ME=MF,
∵CM⊥MN,
∴∠CMN=90°,
∵∠FME=90°,
∴∠CME=∠FMN,
∴△MFN≌△MEC(ASA),
∴MN=MC;
(2)由(1)得FM∥AD,EM∥CD,
∴
=
=
=
,
∴AF=2.4,CE=2.4,
∵△MFN≌△MEC,
∴FN=EC=2.4,
∴AN=4.8,BN=6﹣4.8=1.2,
∴AN=4BN;
(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,
![]()
∵△DMC≌△BHC,∠BCD=90°,
∴MC=HC,DM=BH,∠CDM=∠CBH=45°,∠DCM=∠BCH,
∴∠MBH=90°,∠MCH=90°,
∵MC=MN,MC⊥MN,
∴△MNC是等腰直角三角形,
∴∠MNC=45°,
∴∠NCH=45°,
∴△MCG≌△HCG(SAS),
∴MG=HG,
∵BG:MG=3:5,
设BG=3a,则MG=GH=5a,
在Rt△BGH中,BH=4a,则MD=4a,
∵正方形ABCD的边长为6,
∴BD=6
,
∴DM+MG+BG=12a=6
,
∴a=
,
∴BG=
,MG=
,
∵∠MGC=∠NGB,∠MNG=∠GBC=45°,
∴△MGC∽△NGB,
∴
=
,
∴CGNG=BGMG=
.