题目内容

如图,AB是⊙O的直径,弦CD⊥AB于点E.
(1)求证:∠1=∠2;
(2)若∠1=30°,AB=4,求弦CD的长.
(1)证明:∵AB是⊙O的直径,弦CD⊥AB,
BC
=
BD
,∴∠1=∠2;

(2)连接OC.
∵∠1=30°,
∴∠COE=60°(同弧所对的圆周角是所对的圆心角的一半);
又∵AB=4,
∴OC=2;
∵CD⊥AB于点E,
∴CE=DE(垂径定理),
sin∠COE=
CE
CO

∴CE=2×
3
2

∴CD=2CE=2
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网