题目内容
若关于x的方程(x + 1)2 = k 1没有实数根,则k的取值范围是 ( )
A.k≤1 B.k < 1 C.k≥1 D.k > 1
在矩形ABCD中,AB=6cm,BC=12cm,点P从点A 出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发以2cm/s的速度向点C移动.
(1)写出△DPQ的面积s与时间t的函数关系式.
(2)几秒钟后△DPQ的面积等于28cm2.
如图,已知AB是⊙O直径,∠D=30°,则∠AOC等于( )
A.155° B.145° C.120 ° D.130°
如图,在△ABC中,E,F分别是AC,BC边上的点,P1,P2,P3,…,Pn1是AB边的n等分点,CE = AC,CF = BC,∠B = 40°,AB = BC,则∠EP1F +∠EP2F +∠EP3F + … +∠EP n1F = ________.
如图,△ABC内接于⊙O,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H.若BC = 6,AH = 4,则⊙O的半径为 ( )
A.5 B.2 C. D.5.5
如图,菱形ABCD的对角线AC、BD相交于点E,F是BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D、G两点,AD分别与EF,GF交于I、H两点.
(1)求证:AE∥FD;
(2)试判断AF和AB的数量关系,并证明你的结论;
(3)当G为线段DC的中点时,
①求证:AE=IE;
②设AC=12,BC=10,求GF的长.
一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球.
(1)请用画树状图或列表的方法列出所有可能出现的结果;
(2)求两次都摸到白球的概率.
已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么q的值是
A.9 B.3 C.2 D.-2
已知抛物线y=ax2+bx+c的图象如图所示,那么下列四个结论:1)a+b+c<0;2)a-b+c<0;3)ac>0;4)b+2a>0.正确的个数是( )
A.1个 B.2个 C.3个 D.4个