题目内容
已知抛物线y=-ax2+2ax+b与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式.
对称轴为直线x=1,B(3,0);
(2)连接BC,
∵AB为直径,
∴∠ACB=90°,
又CO⊥AB,
∴△AOC∽△COB,
∴
解得CO=
设过A(-1,0),B(3,0)两点的抛物线解析式为y=a(x+1)(x-3)
将C(0,
∴y=-
即y=-
分析:(1)根据对称轴公式,对称轴x=-
(2)当点C在以AB为直径的⊙P上时,△ABC为直角三角形,已知OA=1,OB=3,由△AOC∽△COB,利用相似比可求OC,即C点坐标,设抛物线解析式的交点式,将C点坐标代入即可.
点评:本题考查了抛物线对称轴公式,抛物线对称性的运用,待定系数法求抛物线解析式的方法.综合运用了圆的对称性,直角三角形中的相似三角形的问题.
练习册系列答案
相关题目