题目内容
已知f(x+y)=f(x)•f(y)对任意的非负实数x,y都成立,f(0)≠0且f(1)=3,则
+
+
+
+…+
+
=______.
| f(1) |
| f(0) |
| f(2) |
| f(1) |
| f(3) |
| f(2) |
| f(4) |
| f(3) |
| f(2003) |
| f(2002) |
| f(2004) |
| f(2003) |
∵f(x+y)=f(x)•f(y);
令x=1,则有f(1+y)=f(1)•f(y)=3f(y);
故f(1)/f(0)=3;f(2)/f(1)=3,f(3)/f(2)=3,…f(2004)/f(2003)=3;
故f(1)/f(0)+f(2)/f(1)+f(3)/f(2)+f(4)/f(3)+…+f(2003)/f(2002)+f(2004)/f(2003)=3×2004=6012.
令x=1,则有f(1+y)=f(1)•f(y)=3f(y);
故f(1)/f(0)=3;f(2)/f(1)=3,f(3)/f(2)=3,…f(2004)/f(2003)=3;
故f(1)/f(0)+f(2)/f(1)+f(3)/f(2)+f(4)/f(3)+…+f(2003)/f(2002)+f(2004)/f(2003)=3×2004=6012.
练习册系列答案
相关题目