题目内容


如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.

(1)求a,b的值;

(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);

(3)在(2)的条件下,当SACN=SPMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.


       解:(1)∵y=﹣x+4与x轴交于点A,

∴A(4,0),

∵点B的横坐标为1,且直线y=﹣x+4经过点B,

∴B(1,3),

∵抛物线y=ax2+bx经过A(4,0),B(1,3),

解得:

∴a=﹣1,b=4;

(2)如图,作BD⊥x轴于点D,延长MP交x轴于点E,

∵B(1,3),A(4,0),

∴OD=1,BD=3,OA=4,

∴AD=3,

∴AD=BD,

∵∠BDA=90°,∠BAD=∠ABD=45°,

∵MC⊥x轴,∴∠ANC=∠BAD=45°,

∴∠PNF=∠ANC=45°,

∵PF⊥MC,∴∠FPN=∠PNF=45°,

∴NF=PF=t,

∵∠DFM=∠ECM=90°,∴PF∥EC,

∴∠MPF=∠MEC,

∵ME∥OB,∴∠MEC=∠BOD,

∴∠MPF=∠BOD,

∴tan∠BOD=tan∠MPF,

==3,

∴MF=3PF=3t,

∵MN=MF+FN,

∴d=3t+t=4t;

(3)如备用图,由(2)知,PF=t,MN=4t,

∴SPMN=MN×PF=×4t×t=2t2

∵∠CAN=∠ANC,

∴CN=AC,

∴SACN=AC2

∵SACN=SPMN

AC2=2t2

∴AC=2t,∴CN=2t,

∴MC=MN+CN=6t,

∴OC=OA﹣AC=4﹣2t,

∴M(4﹣2t,6t),

由(1)知抛物线的解析式为:y=﹣x2+4x,

将M(4﹣2t,6t)代入y=﹣x2+4x得:

﹣(4﹣2t)2+4(4﹣2t)=6t,

解得:t1=0(舍),t2=

∴PF=NF=,AC=CN=1,OC=3,MF=,PN=,PM=,AN=

∵AB=3

∴BN=2

作NH⊥RQ于点H,

∵QR∥MN,

∴∠MNH=∠RHN=90°,

∠RQN=∠QNM=45°,∴∠MNH=∠NCO,

∴NH∥OC,

∴∠HNR=∠NOC,

∴tan∠HNR=tan∠NOC,

==

设RH=n,则HN=3n,

∴RN=n,QN=3n,

∴PQ=QN﹣PN=3n﹣

∵ON==

OB==

∴OB=ON,∴∠OBN=∠BNO,

∵PM∥OB,

∴∠OBN=∠MPB,

∴∠MPB=∠BNO,

∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,

∴∠BRN=∠MQP,

∴△PMQ∽△NBR,

=

=

解得:n=

∴R的横坐标为:3﹣=,R的纵坐标为:1﹣=

∴R().


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网