题目内容
如图,在矩形纸片ABCD中,AB=3,BC=4,把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合,则EF=________.
分析:根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出△ABG≌△C′DG;由可知GD=GB,故AG+GB=AD,设AG=x,则GB=4-x,在Rt△ABG中利用勾股定理即可求出AG的长,进而得出tan∠ABG的值;由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=
解答:
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,
∴∠ABG=∠ADE,
∵在△ABG与△C′DG中,
∴△ABG≌△C′DG(ASA);
∴GD=GB,
∴AG+GB=AD,设AG=x,则GB=4-x,
在Rt△ABG中,
∵AB2+AG2=BG2,即32+x2=(4-x)2,
解得:x=
∴tan∠ABG=
∵△AEF是△DEF翻折而成,
∴EF垂直平分AD,
∴HD=
∴tan∠ABG=tan∠ADE=
∴EH=HD×
∵EF垂直平分AD,AB⊥AD,
∴HF是△ABD的中位线,
∴HF=
∴EF=EH+HF=
故答案为:
点评:本题考查的是翻折变换、全等三角形的判定与性质、矩形的性质及解直角三角形,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.
练习册系列答案
相关题目