题目内容
(2011•恩施州)解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为( )| A.x1=1,x2="3" | B.x1=﹣2,x2=3 |
| C.x1=﹣3,x2=﹣1 | D.x1=﹣1,x2=﹣2 |
D解析:
(2x+5)2﹣4(2x+5)+3=0,
设y=2x+5,
方程可以变为 y2﹣4y+3=0,
∴y1=1,y2=3,
当y=1时,即2x+5=1,解得x=﹣2;
当y=3时,即2x+5=3,解得x=﹣1,
所以原方程的解为:x1=﹣2,x2=﹣1.
故选D.
(2x+5)2﹣4(2x+5)+3=0,
设y=2x+5,
方程可以变为 y2﹣4y+3=0,
∴y1=1,y2=3,
当y=1时,即2x+5=1,解得x=﹣2;
当y=3时,即2x+5=3,解得x=﹣1,
所以原方程的解为:x1=﹣2,x2=﹣1.
故选D.
练习册系列答案
相关题目
(2011•恩施州)下列运算正确的是( )
| A.a6÷a2=a3 | B.a5﹣a3=a2 |
| C.(3a3)2=6a9 | D.2(a3b)2﹣3(a3b)2=﹣a6b2 |
(2011•恩施州)宜万铁路开通后,给恩施州带来了很大方便.恩施某工厂拟用一节容积是90立方米、最大载重量为50吨的火车皮运输购进的A、B两种材料共50箱.已知A种材料一箱的体积是1.8立方米、重量是0.4吨;B种材料一箱的体积是1立方米、重量是1.2吨;不计箱子之间的空隙,设A种材料进了x箱.
(1)求厂家共有多少种进货方案(不要求列举方案)?
(2)若工厂用这两种材料生产出来的产品的总利润y(万元)与x(箱)的函数关系大致如下表,请先根据下表画出简图,猜想函数类型,求出函数解析式(求函数解析式不取近似值),确定采用哪种进货方案能让厂家获得最大利润,并求出最大利润.
| x | 15 | 20 | 25 | 30 | 38 | 40 | 45 | 50 |
| y | 10 | 约27.58 | 40 | 约48.20 | 约49.10 | 约47.12 | 40 | 约26.99 |