题目内容
如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,4(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.(要求:简述确定G点位置的方法,但不要求证明)
【答案】分析:(1)借助△DMC∽△AOC,根据相似三角形的性质得点D的坐标;
(2)先说明四边形CDFE是菱形,且其对称中心为对角线的交点M,则点B与这一点的连线即为所求的直线,再结合全等三角形性质说明即可,由点B、M的坐标求得直线BM的解析式;
(3)过点A作MB的垂线,该垂线与y轴的交点即为所求的点G,再结合由OB、OM的长设法求出∠BAH,借助三角函数求出点G的坐标.
解答:
解:(1)∵A(-6,0),C(0,4
)
∴OA=6,OC=4
设DE与y轴交于点M
由DE∥AB可得△DMC∽△AOC
又∵CD=
AC
∴
∴CM=2
,MD=3
同理可得EM=3
∴OM=6
∴D点的坐标为(3,6
);
(2)由(1)可得点M的坐标为(0,6
)
由DE∥AB,EM=MD
可得y轴所在直线是线段ED的垂直平分线
∴点C关于直线DE的对称点F在y轴上
∴ED与CF互相垂直平分
∴CD=DF=FE=EC
∴四边形CDFE为菱形,且点M为其对称中心
作直线BM,设BM与CD、EF分别交于点S、点T,
可证△FTM≌△CSM
∴FT=CS,
∵FE=CD,
∴TE=SD,
∵EC=DF,
∴TE+EC+CS+ST=SD+DF+FT+TS,
∴直线BM将四边形CDFE分成周长相等的两个四边形,
由点B(6,0),点M(0,6
)在直线y=kx+b上,可得直线BM的解析式为y=-
x+6
.
(3)确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点
由OB=6,OM=6
,
可得∠OBM=60°,
∴∠BAH=30°,
在Rt△OAG中,OG=AO•tan∠BAH=2
,
∴G点的坐标为
.(或G点的位置为线段OM的中点)
点评:本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,其中本题第三问是难点,学生主要不会确定点G的位置.
(2)先说明四边形CDFE是菱形,且其对称中心为对角线的交点M,则点B与这一点的连线即为所求的直线,再结合全等三角形性质说明即可,由点B、M的坐标求得直线BM的解析式;
(3)过点A作MB的垂线,该垂线与y轴的交点即为所求的点G,再结合由OB、OM的长设法求出∠BAH,借助三角函数求出点G的坐标.
解答:
∴OA=6,OC=4
设DE与y轴交于点M
由DE∥AB可得△DMC∽△AOC
又∵CD=
∴
∴CM=2
同理可得EM=3
∴OM=6
∴D点的坐标为(3,6
(2)由(1)可得点M的坐标为(0,6
由DE∥AB,EM=MD
可得y轴所在直线是线段ED的垂直平分线
∴点C关于直线DE的对称点F在y轴上
∴ED与CF互相垂直平分
∴CD=DF=FE=EC
∴四边形CDFE为菱形,且点M为其对称中心
作直线BM,设BM与CD、EF分别交于点S、点T,
可证△FTM≌△CSM
∴FT=CS,
∵FE=CD,
∴TE=SD,
∵EC=DF,
∴TE+EC+CS+ST=SD+DF+FT+TS,
∴直线BM将四边形CDFE分成周长相等的两个四边形,
由点B(6,0),点M(0,6
(3)确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点
由OB=6,OM=6
可得∠OBM=60°,
∴∠BAH=30°,
在Rt△OAG中,OG=AO•tan∠BAH=2
∴G点的坐标为
点评:本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,其中本题第三问是难点,学生主要不会确定点G的位置.
练习册系列答案
相关题目