题目内容
若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是( )
A. B. C. D.
如图,矩形OABC的顶点A、C分别在的正半轴上,点B的坐标为(3,4)一次函数的图象与边OC、AB分别交于点D、E,并且满足OD= BE.点M是线段DE上的一个动点.
(1)求b的值;
(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;
(3)设点N是轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.
当 时,分式有意义;
如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部也向外滑0.4米吗,为什么?.
直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是( )
A. (-4,0) B. (-1,0) C. (0,2) D. (2,0)
满足下列条件的三角形中,不是直角三角形的是( )
A. 三内角之比为 B. 三边长的平方之比为
C. 三边长之比为 D. 三内角之比为
已知矩形ABCD,请仅用无刻度的直尺按下列要求作图(不写作法)
(1)如图1,点P为CD的中点,画出AB的垂直平分线l.
(2)如图2,在矩形ABCD中,以对角线AC为一边构造一个正方形ACFE,画出EF的中点M.
如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.
(1)求顶点D的坐标(用含a的代数式表示).
(2)若以AD为直径的圆经过点C.
①求a的值.
②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段BF=2MF,求点M、N的坐标.
③如图3,点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.
在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)