题目内容

8.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF=4.

分析 作EG⊥OA于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE=15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半解题.

解答 解:作EG⊥OA于G,如图所示:
∵EF∥OB,∠AOE=∠BOE=15°
∴∠OEF=∠COE=15°,EG=CE=2,
∵∠AOE=15°,
∴∠EFG=15°+15°=30°,
∴EF=2EG=4.
故答案为:4.

点评 本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网