题目内容
计算:tan45°+﹣(﹣2016)0﹣4cos30°.
已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为_____三角形.
(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD的周长为 ;
(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);
②在图3中补全图形,求∠EOF的度数;
③若,则的值为 .
小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )
A. 255分 B. 84分 C. 84.5分 D. 86分
在学完“有理数的运算”后,我市某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.
(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?
(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.
据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为_____.
对于反比例函数,下列说法正确的是( )
A. 图象经过点(2,﹣1) B. 图象位于第二、四象限
C. 图象是中心对称图形 D. 当x<0时,y随x的增大而增大
已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_____.
如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,求P点坐标?
(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.