题目内容
当x= 时,分式的值为零.
下列二次根式中,最简二次根式是( )
A. B. C. D.
如图,AB∥CD,那么∠A,∠P,∠C的数量关系是( )
A.∠A+∠P+∠C=90°
B.∠A+∠P+∠C=180°
C.∠A+∠P+∠C=360°
D.∠P+∠C=∠A
先化简,再求值:(1+)•,其中a=3.
一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是 .
A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )
A.
B.
C.+4=9
D.
分式,,中,最简分式有( )
A.0个 B.1个 C.2个 D.3个
如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正确的是( )
A.①② B.①③ C.②③ D.①②③
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.
(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.