题目内容
小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶( )
A.0.5m B.0.55m C.0.6m D.2.2m
如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是( )
A.30° B.40° C.50° D.60
如图,有一圆弧形门拱的拱高AB为1m,跨度CD为4m,则这个门拱的半径为 m.
如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
如图,在△ABC中,D、E分别是AB、BC上的点,且DE∥AC,若,则的值( )
A.1∶5 B. 1∶9 C.1∶12 D.1∶16
例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;
当a=0时,|a|=0,故此时a的绝对值是零;
当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.
∴综合起来一个数的绝对值要分三种情况,即
|a|=
问:(1)这种分析方法涌透了 数学思想.
(2)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.
(3)猜想与|a|的大小关系.
(4)尝试用从以上探究中得到的结论来解决下面的问题:化简(﹣3≤x≤5).
设x1、x2是方程2x2﹣x﹣1=0的两个根,则x1+x2= ,x1•x2= .
已知如图:抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标.
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为 .