题目内容
【题目】如图,已知△ABC,外心为O,BC=10,∠BAC=60°,分别以AB,AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE,CD交于点P,则OP的最小值是_____.
![]()
【答案】5﹣
.
【解析】
根据已知条件证明△DAC≌△BAE,得到∠DPB=90°,证明点P在以BC为直径的圆上,再在△BOC中,求出OH的长,得到答案.
解:如图,
![]()
∵∠BAD=∠CAE=90°,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
,
∴△DAC≌△BAE(SAS),
∴∠ADC=∠ABE,
∴∠PDB+∠PBD=90°,
∴∠DPB=90°,
∴点P在以BC为直径的圆上,
∵外心为O,∠BAC=60°,
∴∠BOC=120°,又BC=10,
∴OH=
,
所以OP的最小值是:
.
练习册系列答案
相关题目