题目内容
计算:1+| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+…+2008 |
分析:根据有理数的加法法则可得:1+2+3+…+n=
.然后可推
=
=2(
-
);∴1=2(1-
);
=2(
-
);
=2(
-
);
=2(
-
).把得到的结果等量代入原题可消去中间所有数剩下首尾两个数,找到规律.
| n(n+1) |
| 2 |
| 1 |
| 1+2+3+…+n |
| 1 | ||
|
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 1+2+3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1+2+3+…+2008 |
| 1 |
| 2008 |
| 1 |
| 2009 |
解答:解:1+
+
+…+
=2(1-
+
-
+…+
-
)
=2(1-
)
=
.
故答案为:
.
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+…+2008 |
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2008 |
| 1 |
| 2009 |
=2(1-
| 1 |
| 2009 |
=
| 4016 |
| 2009 |
故答案为:
| 4016 |
| 2009 |
点评:这种规律性题目一定有规律可寻,要认真分析还要熟记公式.这种题目一般都是消去中间剩下首尾所以首先往这方面考虑.
练习册系列答案
相关题目