题目内容
分析:两直角三角形的斜边是正方形的两边,相等;有一直角对应相等;再根据正方形的角为直角,可得到有一锐角对应相等,易得两直角三角形全等,由三角形全等的性质可把2,1,正方形的边长组合到直角三角形内得正方形边长为
=
.
| 22+12 |
| 5 |
解答:
解:如图,
∵四边形ABCD是正方形,
∴AB=CD,∠ABM+∠CBN=90°,
而AM⊥MN,CN⊥BN,
∴∠BAM=∠CBN,∠AMB=∠CNB=90°,
∴△AMB≌△BCN(AAS),
∴BM=CN,
∴AB为
=
.
故答案为:
.
∵四边形ABCD是正方形,
∴AB=CD,∠ABM+∠CBN=90°,
而AM⊥MN,CN⊥BN,
∴∠BAM=∠CBN,∠AMB=∠CNB=90°,
∴△AMB≌△BCN(AAS),
∴BM=CN,
∴AB为
| 22+12 |
| 5 |
故答案为:
| 5 |
点评:本题考查了正方形各边相等的性质,考查了直角三角形中勾股定理的运用,本题中求证△AMB≌△BCN是解题的关键.
练习册系列答案
相关题目
| A、2 | ||
B、
| ||
| C、3 | ||
D、
|