题目内容
如图,函数y=的图象与双曲线y=(k≠0,x>0)相交于点A(3,m)和点B.
(1)求双曲线的解析式及点B的坐标;
(2)若点P在y轴上,连接PA,PB,求当PA+PB的值最小时点P的坐标.
计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.
在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是( )
A. B. C. D.
计算:2﹣7= .
要使二次根式有意义,则实数a的取值范围是( )
A. a≥﹣3 B. a≠0 C. a≥﹣3且a≠0 D. a>0
已知点(m-1,y1),(m-3,y2)是反比例函数y=(m<0)图象上的两点,则y1____y2(填“>”“=”或“<”)
关于抛物线y=x 2 -2x+1,下列说法错误的是( )
A. 开口向上 B. 与x轴有一个交点
C. 对称轴是直线x=1 D. 当x>1时,y随x的增大而减小
某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B的作品数为_________.
我市绿化部门决定利用现有的不同种类花卉搭配园艺造型,摆放于城区主要大道的两侧.A、B两种园艺造型均需用到杜鹃花,A种造型每个需用杜鹃花25盆,B种造型每个需用杜鹃花35盆,解答下列问题:
(1)已知人民大道两侧搭配的A、B两种园艺造型共60个,恰好用了1700盆杜鹃花,A、B两种园艺造型各搭配了多少个?
(2)如果搭配一个A种造型的成本W与造型个数的关系式为:W=100―x (0<x<50),搭配一个B种造型的成本为80元.现在观海大道两侧也需搭配A、B两种园艺造型共50个,要求每种园艺造型不得少于20个,并且成本总额y(元)控制在4500元以内. 以上要求能否同时满足?请你通过计算说明理由.