题目内容
【题目】如图,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.
![]()
(1)请说明∠1=∠BDC;
(2)若∠1=70°,DA平分∠BDC,试求∠FAB的度数.
【答案】(1)见解析;(2)55°.
【解析】
(1)先根据垂直的定义得出∠GAD=∠GEC=90°,故可得出AD∥CE,再由平行线的性质∠ADC+∠3=180°,据此可得出AB∥CD,进而可得出结论;
(2)先根据平行线的性质得出∠BDC=∠1=70°,再由DA平分∠BDC得出∠ADC的度数,进而得出∠2的度数,由∠FAB=∠FAD-∠2即可得出结论.
(1)∵AD⊥EF,CE⊥EF,
∴∠GAD=∠GEC=90°,
∴AD∥CE,
∴∠ADC+∠3=180°,
又∵∠2+∠3=180°,
∴∠2=∠ADC,
∴AB∥CD,
∴∠1=∠BDC;
(2) ∵AD⊥EF,
∴∠FAD=90°,
∵AB∥CD,
∴∠BDC=∠1=70°,
∵DA平分∠BDC,
∴∠ADC=
∠BDC=
×70°=35°,
∵AB∥CD,
∴∠2=∠ADC=35°,
∴∠FAB=∠FAD-∠2=90°-35°=55°.
练习册系列答案
相关题目