题目内容
如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )
A. 80° B. 90° C. 100° D. 102°
如图在平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.
(1)直线l2是否经过x轴上一定点?若经过,请直接写出定点坐标;若不经过,请说明理由;
(2)若S△ACP=8,求直线l2的函数关系式;
(3)过点M(0,6)作平行于x轴的直线l3,点Q为直线l3上一个动点,当△QAB为等腰三角形时,求所有点Q的坐标.
有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3, 4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是( )
A. B. C. D.
如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.
二元一次方程2x+5y=17的非负整数解的个数为( )
A. 0 B. 1 C. 2 D. 3
如图所示,AB⊥BC于点B,BC⊥CD于点C,∠1=∠2,求证EB∥CF.
计算:(1) (2)
(12分)如图,直角三角形的顶点A、B在x轴上,?ABC=90º ,BC//y轴,且C点在第二象限,B点为(-3,0),将直角三角形ABC沿x轴水平向右平移m个单位,得到对应的直角三角形DEF,其中点A、B、C分别对应点D、E、F,求:
(1)用含m的式子表示E点坐标及AD的长度;
(2)若C点为(-3,n),设四边形BEFC的周长为y,试用含m、n的式子表示周长y;
(3)在(2)的条件下,点P和点Q分别以1个单位/秒,2个单位/秒的速度同时从B点出发,其中,P点沿B→C→F→E→B的方向运动,Q点沿B→E→F→C→B的方向运动,相遇时则停止运动。当P点到达C点时,Q点恰到达E点;从B点出发起,6秒后P点与Q点相遇停止了运动,求四边形ADFC的面积。
当____时,分式的值为正.